$\setCounter{0}$
Suppose $P_1 = \{p_i, p_i \in R^n\}_{i=1}^{M_1}$ and $P_2 = \{p'_i, p'_i \in R^n\}_{i=1}^{M_2}$ are sets of data locations lying in a domain $\Omega \subset R^n$.
Let functional $f_i$ is a value of a function $\varphi$ at a node $p_i \in P_1$ and functional $f'_i$ is a value of that function directional derivative (a slope of the function) at a node $p'_i \in P_2$
Assume the values of functionals $f_i$ and $f'_i$ at nodes belonging to $P_1$ and $P_2$ are known:
\begin{eqnarray}
(f_i , \varphi ) &=& \varphi (p_i) = u_i \ , \quad p_i \in P_1 \ , 1 \le i \le M_1,
\\
(f'_i , \varphi ) &=& \frac{ \partial{\varphi} }{ \partial{e_i} } (p'_i) = u'_i \ , \, p'_i \in P_2 \ , 1 \le i \le M_2,
\end{eqnarray}
where $\frac{ \partial{\varphi} }{ \partial{e_i} } (p'_i) = \sum _{k=1}^{n} \frac{ \partial{\varphi} }{ \partial{x_k} } (p'_i) \cos \theta _{ik}$, and $\cos \theta _{ik} , 1 \le k \le n \, -$ directional cosines of a unit vector $e_i$.
Consider a problem of the function $\varphi$ reconstruction. Let function to be approximated $\varphi$ belongs to Hilbert space $H^s_\varepsilon (R^n)$ where $s > r + n/2, \, r = 1, 2, \dots$. In that case space $H^s_\varepsilon$ is continuously embedded in Hölder space $C_b^r(R^n)$, $\varphi (x) \in C^r(R^n)$ and values of function $\varphi (x)$ and the function partial derivatives at the fixed points are linear continuous functionals in $H^s_\varepsilon$.
We assume that $P_1$ does not contain coincide nodes and there is no directional derivatives defined in a node in $P_2$ which directions are linearly dependent, also a node from $P_1$ may coincide with a node from $P_2$. Under this restriction functionals $f_i, f'_i$ are linearly independent.
In accordance with Riesz representation theorem [1] linear continuous functionals $f_i \, , f'_i$ can be represented in the form of inner product of some elements $h_i \, , h'_i \in H^s_\varepsilon$ and $\varphi \in H^s_\varepsilon$, for any $\varphi \in H^s_\varepsilon$.
\begin{eqnarray}
(f_i, \varphi ) = {\langle h_i, \varphi \rangle}_{H^{s_r}_\varepsilon} \, ,
\quad
(f'_i, \varphi) = {\langle h'_i, \varphi \rangle}_{H^{s_r}_\varepsilon} \, , \quad \forall \varphi \in H^s_\varepsilon \ .
\end{eqnarray}
The notation ${\langle \cdot , \cdot \rangle}_{H^{s_r}_\varepsilon}$ in (3) denotes the inner product in space ${H^{s_r}_\varepsilon}$ (see the previous post for details). It is easy to see that under above assumptions elements $h_i, h'_i$ are linearly independent.
Let $V_{s_r}(\eta , x, \varepsilon), \, s_r = r + n/2 + 1/2, \, r=1, 2, \dots$ is a reproduction kernel of Hilbert space $H^{s_r}_\varepsilon (R^n)$ (see the previous post). The kernel $V_{s_r}(\eta , x, \varepsilon)
\in C^r(R^n)$ as a function of $\eta \in R^n$. In accordance with reproducing property of the reproducing kernel for any $\varphi \in H^{s_r}_\varepsilon (R^n)$ and $x \in R^n$ the identity
\begin{eqnarray}
\varphi (x) = {\langle V_{s_r}(\cdot , x, \varepsilon), \varphi \rangle}_{H^{s_r}_\varepsilon}
\end{eqnarray}
holds. This means that $V_{s_r}(\cdot , x)$ is the Riesz representer of the evaluation functional $\delta_ x$ defined as value of a function $\varphi \in H^{s_r}_\varepsilon$ at a given point $x \in R^n$. As $V_{s_r}$ is a radial basis continuously differentiable function we can differentiate the identity (4) and receive the following identity
\begin{eqnarray}
\frac{ \partial {\varphi (x)} }{\partial{x_i}} = {\left \langle \frac{ \partial {V_{s_r}(\cdot , x, \varepsilon)} }{\partial{x_i}} , \varphi \right \rangle}_{H^{s_r}_\varepsilon}
\end{eqnarray}
which holds for any $\varphi \in H^{s_r}_\varepsilon$ and $x \in R^n$. It means that function $\frac{\partial {V_{s_r}(\cdot , x)} }{\partial{x_i}}$ represents a point-wise functional defined as value of function $\frac{ \partial {\varphi (\cdot)} }{\partial{x_i}}$ at a point $x$.
Thereby
\begin{eqnarray}
h_i (\eta, \varepsilon) &=& V_{s_r}(\eta , p_i, \varepsilon) \, , \quad p_i \in P_1 \ , 1 \le i \le M_1, \ \,
\\
h'_i (\eta, \varepsilon) &=& \frac{ \partial {V_{s_r}(\eta , p'_i, \varepsilon)} }{\partial{e_i}} \, , \ p'_i \in P_2 \ , 1 \le i \le M_2, \ \eta \in R^n \, .
\end{eqnarray}
and system of constraints (1), (2) can be presented as a system of linear equations in Hilbert space $H^{s_r}_\varepsilon$:
\begin{eqnarray}
{\langle h_i, \varphi \rangle}_{H^{s_r}_\varepsilon} &=& u_i \, , \quad 1 \le i \le M_1, \ \,
\\
{\langle h'_i, \varphi \rangle}_{H^{s_r}_\varepsilon} &=& u'_i \, , \ \ \, 1 \le i \le M_2 \, , \quad h_i \, , h'_i \, , \varphi \in H^{s_r}_\varepsilon (R^n).
\end{eqnarray}
This system of constraints defines a convex and closed set in Hilbert space — as an intersection of a finite number of hyperplanes (this set is not an empty set because of linear independence of functionals $h_i, h'_i$).
The problem of reconstruction of function $\varphi$ satisfying system of constraints (8) and (9) is an undetermined problem. We reformulate it as the problem of finding a solution of the system (8), (9) that has minimal norm:
\begin{eqnarray}
\sigma_1 = {\rm arg\,min}\{ \| \varphi \|^2_{H^{s_r}_\varepsilon} : (8), (9), \forall \varphi \in {H^{s_r}_\varepsilon} (R^n) \} \, ,
\end{eqnarray}
such solution exists and it is unique [1, 6]. The element $\sigma_1$ is an interpolating normal spline.
In accordance with generalized Lagrange method ([5], [6]) the solution of the problem (10) can be written as follows:
\begin{eqnarray}
\sigma_1 = \sum _{j=1}^{M_1} \mu_j h_j + \sum _{j=1}^{M_2} \mu'_j h'_j \ ,
\end{eqnarray}
here coefficients $\mu_i, \mu'_i$ are defined by the system
\begin{eqnarray}
\sum _{j=1}^{M_1} g_{ij} \mu_j + \sum _{j=1}^{M_2} g'_{ij} \mu'_j &=& u_i \, , \quad 1 \le i \le M_1 \, ,
\\
\sum _{j=1}^{M_1} g'_{ji} \mu_j + \sum _{j=1}^{M_2} g''_{ij} \mu'_j &=& u'_i \, , \quad 1 \le i \le M_2 \, ,
\end{eqnarray}
where $g_{ij}, g'_{ij}, g''_{ij}$ are coefficients of the positive definite symmetric Gram matrix of the set of linearly independent elements $h_i, h'_i \in H^{s_r}_\varepsilon (R^n)$:
\begin{eqnarray}
g_{ij} = {\langle h_i, h_j \rangle}_{H^{s_r}_\varepsilon} = (f_i, h_j) \, , \quad 1 \le i \le M_1 \, , \ 1 \le j \le M_1 \, ,
\\
g'_{ij} = {\langle h_i, h'_j \rangle}_{H^{s_r}_\varepsilon} = (f_i, h'_j) \, , \quad 1 \le i \le M_1 \, , \ 1 \le j \le M_2 \, ,
\\
g''_{ij} = {\langle h'_i, h'_j \rangle}_{H^{s_r}_\varepsilon} = (f'_i, h'_j) \, , \quad 1 \le i \le M_2 \, , \ 1 \le j \le M_2 \, ,
\end{eqnarray} Taking into account (3), (6), (7) we receive:
\begin{eqnarray}
g_{ij} &=& V_{s_r}(p_i , p_j, \varepsilon) \, , \quad p_i, p_j \in P_1 , \ 1 \le i \le M_1 , \ 1 \le j \le M_1 ,
\\ \nonumber
\\
g'_{ij} &=& \frac{ \partial {V_{s_r}(p_i, p'_j, \varepsilon)} }{\partial{e_j}} = \sum_{k=1}^n \frac{ \partial {V_{s_r}(p_i, p'_j, \varepsilon)} }{\partial{x_k}} \cos \theta _{jk} \, , \\ \nonumber && p_i \in P_1 \, , \ 1 \le i \le M_1 , \ p'_j \in P_2 , \ 1 \le j \le M_2 \, ,
\\
g''_{ij} &=& \frac{ \partial^2 {V_{s_r}(p'_i, p'_j, \varepsilon)} } {\partial{e_i} \partial{e_j}} = \sum_{l=1}^n \sum_{k=1}^n \frac{ \partial^2 {V_{s_r}(p'_i, p'_j, \varepsilon)} } {\partial{\eta_l} \partial{x_k}} \cos \theta _{il} \cos \theta _{jk} \, ,\\ \nonumber && p'_i, p'_j \in P_2 , \ 1 \le i \le M_2 \, , \ 1 \le j \le M_2 \, .
\end{eqnarray}
Thus the problem (10) is reduced to solving a system of linear equations (12), (13) with Gram matrix defined by (18) — (19) and constructing the normal spline (11).
Assume the function to be approximated $\varphi$ belongs to Hilbert space $H^{s_1}_\varepsilon (R^n)$, $s_1 = 1 + n/2 + 1/2$ (see the previous post). It is a continuously differentiable function, $\varphi \in C^1 (R^n)$. Write down the expressions for $h_j, h'_j, g_{ij}, g'_{ij}, g''_{ij}$ in space $H^{s_1}_\varepsilon (R^n)$:
\begin{eqnarray}
h_j (\eta, \varepsilon) &=& \exp (-\varepsilon |\eta - p_j |) (1 + \varepsilon |\eta - p_j |) \ ,
\\ \nonumber
&& p_j \in P_1 \ , \ 1 \le j \le M_1 \, ,
\\
h'_j (\eta, \varepsilon) &=& \varepsilon^2 \exp (-\varepsilon | \eta - p'_j | ) \sum _{k=1}^n (\eta_k - p'_{jk})\cos \theta_{jk} \ ,
\\ \nonumber
&& p'_j \in P_2 \ , \ 1 \le j \le M_2 \, , \quad \eta \in R^n \, ,
\end{eqnarray}
then
\begin{eqnarray}
g_{ij} &=& \exp (-\varepsilon | p_i - p_j | )(1 + \varepsilon | p_i - p_j | ) \ , \ p_i, p_j \in P_1 \ , 1 \le i \le M_1 \, ,
\\
g'_{ij} &=& \varepsilon^2 \exp (-\varepsilon | p_i - p'_j | ) \sum _{k=1}^n (p_{ik} - p'_{jk})\cos \theta_{jk} \ ,
\\ \nonumber
&& p_i \in P_1 \, , \ p'_j \in P_2 \ , 1 \le i \le M_1 \, , \ 1 \le j \le M_2 \, , \\ g''_{ij} &=& \sum_{l=1}^n \sum_{k=1}^n \frac{ \partial^2 {V_{s_1}(p'_i, p'_j, \varepsilon)} } {\partial{\eta_l} \partial{x_k}} \cos \theta _{il} \cos \theta _{jk} \, ,\\ \nonumber && p'_i, p'_j \in P_2 , \ 1 \le i \le M_2 \, , \ 1 \le j \le M_2 \, , i \ne j \, , \\ \nonumber && \text{where} \\ \nonumber && \frac{ \partial^2 {V_{s_1}(p'_i, p'_j, \varepsilon)} } {\partial{\eta_k} \partial{x_k}} = \varepsilon^2 \exp (-\varepsilon | p'_i - p'_j | ) \left( 1 - \varepsilon \frac {(p'_{ik} - p'_{jk})^2}{| p'_i - p'_j |} \right) \, , \\ \nonumber && \frac{ \partial^2 {V_{s_1}(p'_i, p'_j, \varepsilon)} } {\partial{\eta_l} \partial{x_k}} = -\varepsilon^3 \exp (-\varepsilon | p'_i - p'_j | ) \frac {(p'_{ik} - p'_{jk})(p'_{il} - p'_{jl})}{| p'_i - p'_j |} \, , \ \ l \ne k \, ,
\\
g''_{ii} &=& \varepsilon^2 \sum _{l=1}^n\ (\cos \theta_{il})^2 = \varepsilon^2 \, , \quad 1 \le i \le M_2 \, .
\end{eqnarray}
Consider a case when the function to be approximated $\varphi$ may be treated as an element of Hilbert space $H^{s_2}_\varepsilon (R^n)$, $s_2 = 2 + n/2 + 1/2$. In this case it is a twice continuously differentiable function, $\varphi \in C^2 (R^n)$. Let's write down the expressions for $h_j, h'_j$ in space $H^{s_2}_\varepsilon (R^n)$:
\begin{eqnarray}
h_j (\eta, \varepsilon) &=& \exp (-\varepsilon |\eta - p_j |) (3 + 3 \varepsilon |\eta - p_j | + \varepsilon^2 |\eta - p_j |^2) ) \ ,
\\ \nonumber
&& p_j \in P_1 \ , 1 \le j \le M_1 \, ,
\\
h'_j (\eta, \varepsilon) &=& \varepsilon^2 \exp (-\varepsilon |\eta - p'_j | ) (1 + \varepsilon |\eta - p'_j |) \sum _{k=1}^n (\eta_k - p'_{jk})\cos \theta_{jk} \ ,
\\ \nonumber
&& p'_j \in P_2 \, , \ \ 1 \le j \le M_2 \, , \ \eta \in R^n \, ,
\end{eqnarray}
and corresponding Gram matrix elements $g_{ij}, g'_{ij}, g''_{ij}$ are as follows
\begin{eqnarray}
g_{ij} &=& \exp (-\varepsilon |p_i - p_j |) (3 + 3 \varepsilon |p_i - p_j | + \varepsilon^2 |p_i - p_j |^2) ) \ , \\ \nonumber && p_i, p_j \in P_1 \ , 1 \le i \le M_1 \, ,
\\
g'_{ij} &=& \varepsilon^2 \exp (-\varepsilon |p_i - p'_j | ) (1 + \varepsilon |p_i - p'_j |) \sum _{k=1}^n (p_{ik} - p'_{jk})\cos \theta_{jk} \ ,
\\ \nonumber
&& p_i \in P_1 \, , \ p'_j \in P_2 \ , 1 \le i \le M_1 \, , 1 \le j \le M_2 \, ,
\\ g''_{ij} &=& \sum_{l=1}^n \sum_{k=1}^n \frac{ \partial^2 {V_{s_2}(p'_i, p'_j, \varepsilon)} } {\partial{\eta_l} \partial{x_k}} \cos \theta _{il} \cos \theta _{jk} \, ,\\ \nonumber && p'_i, p'_j \in P_2 , \ 1 \le i \le M_2 \, , \ 1 \le j \le M_2 \, , i \ne j \, , \\ \nonumber && \text{where} \\ \nonumber && \frac{ \partial^2 {V_{s_2}(p'_i, p'_j, \varepsilon)} } {\partial{\eta_k} \partial{x_k}} = \varepsilon^2 \exp (-\varepsilon | p'_i - p'_j | ) (1 + \varepsilon | p'_i - p'_j | - \varepsilon^2 (p'_{ik} - p'_{jk})^2) \, , \\ \nonumber && \frac{ \partial^2 {V_{s_2}(p'_i, p'_j, \varepsilon)} } {\partial{\eta_l} \partial{x_k}} = -\varepsilon^4 \exp (-\varepsilon | p'_i - p'_j | ) (p'_{ik} - p'_{jk})(p'_{il} - p'_{jl}) \, , \ \ l \ne k \, ,
\\
g''_{ii} &=& \varepsilon^2 \sum _{l=1}^n\ (\cos \theta_{il})^2 = \varepsilon^2 \, , \quad 1 \le i \le M_2 \, ,
\end{eqnarray}
If the original task does not contain constraints including function $\varphi$ derivatives ($P_2$ is an empty set, thereby there are no constraints (2) in (1)—(2)), we may construct an interpolating normal spline assuming $\varphi$ is an element of Hilbert space $H^{s_0}_\varepsilon (R^n)$, $s_0 = n/2 + 1/2$. In this case it is a continuous function, $\varphi \in C (R^n)$, and expressions for $h_i, g_{ij}$ are defined by:
\begin{eqnarray}
h_i (\eta, \varepsilon) &=& \exp (-\varepsilon |\eta - p_i |) \ , \eta \in R^n, \ p_i \in P_1 \ , 1 \le i \le M_1 \, , \\ g_{ij} &=& \exp (-\varepsilon | p_j - p_i | )) \ , \\ \nonumber && \ p_i, p_j \in P_1 \ , 1 \le i \le M_1 \, , \ 1 \le j \le M_1 \, ,
\end{eqnarray}
When value of the parameter $\varepsilon$ is small this spline is similar to multivariate generalization of the one dimensional linear spline.
We now consider the choice of value for parameters $s$ and $\varepsilon$. The parameter $s$ defines smoothness of the spline — if $s > n/2$ then spline belongs to $C^{[s - n/2 ]}$, where $[\cdot]$ denotes integer part of number. Moreover, discontinuities of derivatives of a greater order are observed only at the nodes $p_i, p'_i$, at all other points of $R^n$ the spline is infinitely differentiable. With increasing $s$ the condition number of the Gram matrix increases and computational properties of the problem of the function $\varphi$ approximation are worsening. Thereby it make sense to choose a reasonably small value for the parameter $s$.
A normal spline is similar to Duchon's $D^m -$spline [3] when value of parameter $\varepsilon$ is small. Approximating properties of the spline are getting better with smaller values of $\varepsilon$, however with decreasing value of $\varepsilon$ the condition number of Gram matrix increases. Therefore, when choosing the value of parameter $\varepsilon$, a compromise is needed. In practice, it is necessary to choose such value of the $\varepsilon$ that condition number of Gram matrix is small enough. Numerical procedures of the matrix condition number estimation are well known (e.g. [4]).
As well, as a rule, it is useful to preprocess the source data of the problem by scaling the domain $\Omega \subset R^n$ in which the interpolation nodes $p_i, p'_i$ are located into a unit hypercube.
Often accurate values of $u_i, u'_i$ in (1), (2) are not known. Assuming that uniform error bounds $\delta_i, \delta'_i$ are given, we can formulate the problem of function $\varphi$ approximation by constructing a uniform smoothing normal spline $\sigma_2$:
\begin{eqnarray}
&& \sigma_2 = {\rm arg\,min}\{ \| \varphi \|^2_{H^{s_r}_\varepsilon} : (35), (36), \forall \varphi \in {H^{s_r}_\varepsilon} (R^n) \} \, ,
\\
&& | \varphi (p_i) - u_i | \le \delta _i \, , \quad p_i \in P_1 \ , 1 \le i \le M_1, \\
&& \left| \frac{ \partial{\varphi} }{ \partial{e_i} } (p'_i) - u'_i \right| \le \delta' _i \, , \ p'_i \in P_2 \ , 1 \le i \le M_2 \, .
\end{eqnarray}
In a case when a mean squared error $\delta^2$ is known an approximating mse-smoothing normal spline $\sigma_3$ can be constructed as a solution of the following variational problem:
\begin{eqnarray}&& \sigma_3 = {\rm arg\,min}\{ \| \varphi \|^2_{H^{s_r}_\varepsilon} : (38)\, , \forall \varphi \in {H^{s_r}_\varepsilon} (R^n) \} \, ,
\\
&& \sum _{i \in P_1} ( \varphi (p_i) - u_i )^2 + \sum _{i \in P_2}\left( \frac{ \partial{\varphi} }{ \partial{e_i} } (p'_i) - u'_i \right)^2 \le \delta ^2 \, .
\end{eqnarray} Constraints (35)—(36) and (38) define convex closed sets in Hilbert space $H^{s_r}_\varepsilon (R^n)$, $s_r = r + n/2 + 1/2, \, r=1, 2, \dots$. Under assumptions made earlier these sets are not empty, thus problems (34) and (37) are problems of finding a projection of zero element of Hilbert space to a non-empty closed convex set. A solution of such problem exists and it is unique.
Algorithms of solving problems (34) and (37) will be described in next posts.
Earlier a problem of multivariate normal splines constructing was treated in ([2], [7], [8]) and presented at [9] and [10].
[1] A. Balakrishnan, Applied Functional Analysis, New York, Springer-Verlag, 1976.
[2] V. Gorbunov, I. Kohanovsky, K. Makedonsky, Normal splines in reconstruction of multi-dimensional dependencies. Papers of WSEAS International Conference on Applied Mathematics, Numerical Analysis Symposium, Corfu, 2004. (http://www.wseas.us/e-library/conferences/corfu2004/papers/488-312.pdf)
[3] J. Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, Lect. Notes in Math., Vol. 571, Springer, Berlin, 1977
[4] W.Hager, Condition Estimates, SIAM Journal on Scientific and Statistical Computing, Vol.5, N.2, 1984
[5] A. Ioffe, V. Tikhomirov, Theory of extremal problems, North-Holland, Amsterdam, 1979.
[6] P.-J. Laurent, Approximation et optimization, Paris, 1972.
[7] I. Kohanovsky, Normal Splines in Computing Tomography, Avtometriya, 1995, N 2. (https://www.iae.nsk.su/images/stories/5_Autometria/5_Archives/1995/2/84-89.pdf)
[8] I. Kohanovsky, Data approximation using multidimensional normal splines. Unpublished manuscript. 1996.
[9] I. Kohanovsky, Multidimensional Normal Splines and Problem of Physical Field Approximation, International Conference on Fourier Analysis and its Applications, Kuwait, 1998.[10] I. Kohanovsky, Normal splines in fractional order Sobolev spaces and some of its
applications, The Third Siberian Congress on Applied and Industrial mathematics (INPRIM-98), Novosibirsk, 1998.